## Technological innovations

Stephen Intille, Ph.D. Technology Director

Changing Places / House\_n Consortium Massachusetts Institute of Technology

September 6, 2003

## Take away: 4 new opportunities

- Continuous, rich recording from a variety of sensors
- Algorithms to process data to reduce coding time
- Context-sensitive data collection to collect data and prompt for self-report at desired times and places
- □ *Context-sensitive*, personalized interventions

## Your task...

What are the possibilities for *your* research?

## Relevance to health research (1)

 Ability to better study how context (people, places, things) impacts behavior

## Examples

- Measurement of moderate intensity or greater physical activity
- Dietary decision making
- Making every interruption count

## Relevance to health research (2)

- □ Ability to create and measure impact of "just-in-time" interventions
- □ Example: physical activity
  - Measurement is important, but we already know people don't get enough physical activity!
  - Just-in-time detection of activity for positive reinforcement

## Overview

- □ New developments
- Examples
  - Context-sensitive experience sampling
  - Portable kit of "tape on" environmental sensors
  - PlaceLab
- Emerging opportunities
- Challenges

## New developments New developments - Examples - Emerging opportunities - Challenges

## Data collection in the (not-so-distant) future

- □ Record and save everything from subjects:
  - 24/7 video stream (160x120 resolution,10fps,MPEG-4) [1.56 GB/day]
  - 24/7 audio stream (24kHz mp3) [.57 GB/day]
  - 24/7 1 photo per minute or other data [.57 GB/day]
  - 16/7 One 3MB data file per hour [72MB/day]

- □ A year of data: 990MB
- □ 2007: Terabyte of data <\$300</p>

## Sensors in the (not-so-distant) future

## □ Example:

- Video/photos from miniature pocket/cap camera
- Continuous audio recording, keyword detection
- Real-time HR data
- Real-time motion data all limbs, hip
- Real-time indoor/outdoor position
- Real-time position relative to other people
- Real-time data from home: objects touched/used
- Data on use of communication devices
- No encumbering or nerdy-looking devices
- Context-sensitive self report

## Data analysis in the (not-so-distant) future

- Computers pre-process data:
  - Translate noisy sensor data into meaningful labels E.G. Cooking, socializing, running, smoking, ...
- Computer helps researcher search data:
  - "find all the moments when the subject might have been cooking"
  - "query the subject whenever the subject is near another subject"
  - "show me video clips of moments when the subject was with other people"
  - "indicate where the subject spent the most time"

## Personalized mobile computing device





Take your pick...

Powerful, inexpensive, sensor-enabled mobile computing device *carried nearly everywhere* 

## The mobile computing device...

- Color touch screen
- Light, comfortable to carry everywhere
- □ 1GB+ disk space
- Sound player (MP3 and other)
- Sound recorder
- Camera
- Fingerprint recognizer
- □ 400+ MHz processor
- Always on wireless connection

- Battery life
- Cost (not for long)

- □ Barcode scanner
- Handwritten input
- Speech input
- Video game player
- GPS / location detection
- Accelerometers
- Biomonitors

## New developments in pattern recognition

### □ Innovation:

- Real-time recognition of activities
   (e.g. walking, running, posture, cooking ...)
- Recognition of affect (e.g. frustration, stress, anger)
- Speech recognition
- Recognition of socialization activity

## □ Remaining challenges:

- Real-time recognition of many activities
- Unencumbering recognition of many emotional states

## Technologist's interest

Want to design technology for real-world environments and to test technology in context, but...

Vast majority of homes and workplaces do not look anything like our labs and prototype environments!



## Motivation for sensing/measurement tools

- Behavior is "situated", i.e. influenced by environment
- Simulating natural setting in lab difficult (impossible?)
- □ Real environments are terribly complex
- Need sensors to measure reaction to interventions in context of everyday life

## Examples

- New developments
- Examples
- Emerging opportunities
- Challenges

## House\_n: tools to study natural settings

Portable data collection and intervention toolkit

PlaceLab residential research facility





## Context-aware experience sampling

## Electronic experience sampling



## MIT version: new data collection capabilities



## E.g.: trigger sample based on position



## E.g.: trigger sample based on HR





## Context-aware experience sampling

- Scheduling options
  - Fixed
  - Random within intervals
  - User-initiated
  - Triggered by context
- □ PDA plug-in sensors and sampling devices
  - GPS
  - Heart rate
  - Bar code scanner
  - Camera
  - Accelerometers

Future: Bluetooth

## Context-aware experience sampling tool

- □ Uses at MIT:
  - Machine learning algorithm development
  - Physical activity interventions
  - Studying interruptions (using biometric data)
  - Planned: workplace studies
- Available to researchers http://caes.sourceforge.net



## Multiple, wire-free accelerometers

Placementpoints



- □ Collect data up to 24 hours
- □ 2 axis, 85Hz sampling
- □ No wires
- Next version (Fall):
   watch size, comfortable,
   real-time wireless





□ Features



Aggregate confusion matrix for fast C4.5 classifier based on leave-one-subject out validation for 20 subjects using laboratory and obstacle course data.

```
Walking while carrying item
                                                                                                  Sitting and relaxing
893
                                                                                                  Working on computer
                                                                                                  Standing still
                                                                                                  Eating or drinking
                320
                                                                                                  Watching TV
                     961
                          491
                                830
                                     10
309
                                                                                                = Bicycling
      30
                                                                                                  Stretching
                                          500
                                                                                                  Strength-training
                                               403
                                                     11
885
                                                                                                  Folding Taundry
                                                                                                  Lying down and relaxing
                                                                                                  Brushing teeth
                                                                                                 Climbing stairs
                                                                                                - Riding elevator
                                                                                                = Riding escalator
```

## Current work

- Development of comfortable, 24 hour wireless,
   2-3 axis mobile accelerometers
  - Smaller than CSA actigraph
  - Real-time data streaming
  - High sampling rate
- Real-time mobile activity recognition for context-sensitive data collection

# Tape-on environmental sensors

## Environmental sensor kit

- □ Data collection board with swappable sensor
- □ Small, robust
- □ Relatively inexpensive (\$27 each at qty of 150)
- □ Collect state change data 4+ weeks
- □ +/- 2 second timestamp synchronization
- □ Tape-on install
- Non stigmatizing
- □ Relatively non-invasive

## Environmental sensor kit



## One subject's home



- 3 hours with small team
- □ Install: tape-on
- Approx. 85-100 sensors in small 1 bedroom
- □ On | Off
- □ Open | Closed
  - □ Position | Identity

## Studying behavior in context



































### Cooking breakfast 3/27



# Cooking breakfast 4/01



(S. Intille – MIT)







#### Collaborative development of interventions



## The PlaceLab

- A residential laboratory for studying behavior in the home

#### PlaceLab





- Not a prototype
- Not a demonstration

#### PlaceLab floor plan / cabinetry



Section Perspective



#### Floor Plan



#### Each infill cabinet

#### State of fixed things



Switch sensors in cabinets and appliances

#### State of movable things



Wireless sensors in movable furniture

### Location/identity of people



IR transmitters

#### **Environmental conditions**



Locations of temperature, humidity, CO, CO2, and smoke sensors

#### Optical sensors (IR & visible)



IR and visible light sensors

#### Communication w/ directed audio



Speakers and microphones

#### PlaceLab: Design for real people

- Heard yesterday: "We are assuming our research subjects are behaving like rats"
- □ Use measurement tools to study:
  - How to study people in natural settings
  - How to show user's own data to get them to help researchers design new, effective interventions

# Emerging opportunities

- New developments
- Examples
- Emerging opportunities
- Challenges

#### Measuring and motivating health behavior

- Switch/bend sensors
  - Doors
  - Cabinets
  - Drawers
  - Thresholds
  - Appliances
  - Objects
- Wearable sensors
  - Accelerometers
  - Heart rate monitor
  - Self report
- Multi-purpose sensors
  - People-locator tags
  - Auditory sensors
  - Optical sensors



Detect **change** in activity; **Motivate** behavior changes;

Provide info at teachable moment

applications

#### Best bet: link advice with activity

- □ Simple messages (points of decision/behavior/consequence)



- □ Big impact
  - 20% shown for energy
  - Substantial gains for preventive medicine

# Challenges

- New developments
- Examples
- Emerging opportunities
- Challenges

#### Volume of data / ethical collection

- □ Terrabytes possible
- Annotation can be time consuming, costly, and challenging
- Ethical issues may be raised by data collection

#### Data analysis techniques

- □ New types of multi-modal data
- □ Sensor algorithms noisy/probabilistic
- □ Desired contextual cues can be ill-defined:
  - E.g. "Cooking"
  - E.g. "Jittery"
  - E.g. "Getting dressed"
  - ■E.g. "Busy"

#### Thank you!

- □ For more information:
  - intille@mit.edu
  - http://architecture.mit.edu/house n
- Looking for preventive health collaborators
- Portable tools available
- PlaceLab opens in October.Call for proposals soon.

(Propose a study on EMA and interruption?)